CD Iberia
   HOME

TheInfoList



OR:

The compact disc (CD) is a
digital Digital usually refers to something using discrete digits, often binary digits. Technology and computing Hardware *Digital electronics, electronic circuits which operate using digital signals **Digital camera, which captures and stores digital i ...
optical disc
data storage Data storage is the recording (storing) of information (data) in a storage medium. Handwriting, phonographic recording, magnetic tape, and optical discs are all examples of storage media. Biological molecules such as RNA and DNA are conside ...
format that was co-developed by Philips and Sony to store and play
digital audio Digital audio is a representation of sound recorded in, or converted into, digital form. In digital audio, the sound wave of the audio signal is typically encoded as numerical samples in a continuous sequence. For example, in CD audio, sa ...
recordings. In August 1982, the first compact disc was manufactured. It was then released in October 1982 in Japan and branded as '' Digital Audio Compact Disc''. The format was later adapted (as
CD-ROM A CD-ROM (, compact disc read-only memory) is a type of read-only memory consisting of a pre-pressed optical compact disc that contains data. Computers can read—but not write or erase—CD-ROMs. Some CDs, called enhanced CDs, hold both comput ...
) for general-purpose data storage. Several other formats were further derived, including write-once audio and data storage ( CD-R), rewritable media ( CD-RW), Video CD (VCD),
Super Video CD Super Video CD (Super Video Compact Disc or SVCD) is a digital format for storing video on standard compact discs. SVCD was intended as a successor to Video CD and an alternative to DVD-Video, and falls somewhere between both in terms of techni ...
(SVCD),
Photo CD Photo CD is a system designed by Kodak for digitizing and saving photos onto a CD. Launched in 1991, the discs were designed to hold nearly 100 high quality images, scanned prints and slides using special proprietary encoding. Photo CDs are de ...
,
Picture CD Picture CD is a product by Kodak, following on from the earlier Photo CD product. It holds photos from a single roll of color film, stored at 1024×1536 resolution using JPEG compression. The product is aimed at consumers. Software to view and pe ...
, Compact Disc-Interactive (
CD-i The Compact Disc-Interactive (CD-I, later CD-i) is a Digital media, digital optical disc data storage device, data storage format that was mostly developed and marketed by Dutch company Philips. It was created as an extension of Compact Disc Di ...
) and
Enhanced Music CD The Blue Book is a compact disc standard developed in 1995 by Philips and Sony. It defines the Enhanced Music CD format (E-CD, also known as CD-Extra, CD-Plus and CD+), which combines audio tracks and data tracks on the same disc. The format was ...
. Standard CDs have a diameter of and are designed to hold up to 74 minutes of uncompressed
stereo Stereophonic sound, or more commonly stereo, is a method of sound reproduction that recreates a multi-directional, 3-dimensional audible perspective. This is usually achieved by using two independent audio channels through a configuration ...
digital audio or about 650 mebibyte, MiB of data. Capacity is routinely extended to 80 minutes and 700 mebibyte, MiB by arranging data more closely on the same sized disc. The Mini CD has various diameters ranging from ; they are sometimes used for CD singles, storing up to 24 minutes of audio, or delivering device drivers. At the time of the technology's introduction in 1982, a CD could store much more data than a personal computer hard disk drive, which would typically hold 10 MiB. By 2010, hard drives commonly offered as much storage space as a thousand CDs, while their prices had plummeted to commodity level. In 2004, worldwide sales of audio CDs, CD-ROMs, and CD-Rs reached about 30 billion discs. By 2007, 200 billion CDs had been sold worldwide.


Physical details

A CD is made from thick, polycarbonate plastic and weighs 14–33 grams. From the center outward, components are: the center spindle hole (15 mm), the first-transition area (clamping ring), the clamping area (stacking ring), the second-transition area (mirror band), the program (data) area, and the rim. The inner program area occupies a radius from 25 to 58 mm. A thin layer of aluminum or, more rarely, Gold compact disc, gold is applied to the surface, making it reflective. The metal is protected by a film of lacquer normally spin coated directly on the reflective layer. The label is printed on the lacquer layer, usually by screen printing or offset printing. CD data is represented as tiny indentations known as ''pits'', encoded in a spiral track moulded into the top of the polycarbonate layer. The areas between pits are known as ''lands''. Each pit is approximately 100 Nanometre, nm deep by 500 nm wide, and varies from 850 nm to 3.5 Micrometre, µm in length. The distance between the tracks (the ''pitch'') is 1.6 µm. When playing an audio CD, a motor within the CD player spins the disc to a scanning velocity of 1.2–1.4 m/s (constant linear velocity, CLV)—equivalent to approximately 500 RPM at the inside of the disc, and approximately 200 RPM at the outside edge. The track on the CD begins at the inside and spirals outward so a disc played from beginning to end slows its rotation rate during playback. The program area is 86.05 cm2 and the length of the recordable spiral is With a scanning speed of 1.2 m/s, the playing time is 74 minutes, or 650 MiB of data on a CD-ROM. A disc with data packed slightly more densely is tolerated by most players (though some old ones fail). Using a linear velocity of 1.2 m/s and a narrower track pitch of 1.5 µm increases the playing time to 80 minutes, and data capacity to 700 MiB. A CD is read by focusing a 780 nm wavelength (near infrared) semiconductor laser through the bottom of the polycarbonate layer. The change in height between pits and lands results in a difference in the way the light is reflected. Because the pits are indented into the top layer of the disc and are read through the transparent polycarbonate base, the pits form bumps when read. The laser hits the disc, casting a circle of light wider than the modulated spiral track reflecting partially from the lands and partially from the top of any bumps where they are present. As the laser passes over a pit (bump), its height means that the part of the light reflected from its peak is 1/2 wavelength out of phase with the light reflected from the land around it. This causes partial cancellation of the laser's reflection from the surface. By measuring the reflected intensity change with a photodiode, a modulated signal is read back from the disc. To accommodate the spiral pattern of data, the laser is placed on a mobile mechanism within the disc tray of any CD player. This mechanism typically takes the form of a sled that moves along a rail. The sled can be driven by a worm gear or linear motor. Where a worm gear is used, a second shorter-throw linear motor, in the form of a coil and magnet, makes fine position adjustments to track eccentricities in the disk at high speed. Some CD drives (particularly those manufactured by Philips during the 1980s and early 1990s) use a swing arm similar to that seen on a gramophone. This mechanism allows the laser to read information from the center to the edge of a disc without having to interrupt the spinning of the disc itself. The pits and lands do ''not'' directly represent the 0s and 1s of binary data. Instead, non-return-to-zero, inverted encoding is used: a change from either pit to land or land to pit indicates a 1, while no change indicates a series of 0s. There must be at least two, and no more than ten 0s between each 1, which is defined by the length of the pit. This, in turn, is decoded by reversing the eight-to-fourteen modulation used in mastering the disc, and then reversing the cross-interleaved Reed–Solomon coding, finally revealing the raw data stored on the disc. These encoding techniques (defined in the ''Compact Disc Digital Audio#Data encoding, Red Book'') were originally designed for Compact Disc Digital Audio, CD Digital Audio, but they later became a standard for almost all CD formats (such as
CD-ROM A CD-ROM (, compact disc read-only memory) is a type of read-only memory consisting of a pre-pressed optical compact disc that contains data. Computers can read—but not write or erase—CD-ROMs. Some CDs, called enhanced CDs, hold both comput ...
).


Integrity

CDs are susceptible to damage during handling and from environmental exposure. Pits are much closer to the label side of a disc, enabling defects and contaminants on the clear side to be out of focus during playback. Consequently, CDs are more likely to suffer damage on the label side of the disc. Scratches on the clear side can be repaired by refilling them with similar refractive plastic or by careful polishing. The edges of CDs are sometimes incompletely sealed, allowing gases and liquids to enter the CD and corrode the metal reflective layer and/or interfere with the focus of the laser on the pits, a condition known as disc rot.Council on Library and Information Resources
Conditions that Affect CDs and DVDs
The fungus ''Geotrichum candidum'' has been found—under conditions of high heat and humidity—to consume the polycarbonate plastic and aluminium found in CDs. The data integrity of compact discs can be measured using Optical Disc#Surface error scanning, surface error scanning, which is able to measure the rates of different types of data errors, known as ''C1'', ''C2 error, C2'', ''CU'' and extended (finer-grain) error measurements known as ''E11'', ''E12'', ''E21'', ''E22'', ''E31'' and ''E32'', of which higher rates indicate a possibly damaged or unclean data surface, low media quality, disc rot, deteriorating media and CD-R, recordable media written to by a malfunctioning CD writer. Error scanning can reliably predict data losses caused by media deteriorating. Support of error scanning differs between vendors and models of Optical disc drive#Appliances, optical disc drives, and ''extended'' error scanning (known as ''"advanced error scanning"'' in Nero DiscSpeed) has only been available on Plextor#Optical drives, Plextor and some BenQ optical drives so far, as of 2020.


Disc shapes and diameters

The digital data on a CD begins at the center of the disc and proceeds toward the edge, which allows adaptation to the different sizes available. Standard CDs are available in two sizes. By far, the most common is in diameter, with a 74- or 80-minute audio capacity and a 650 or 700 MiB (737,280,000-byte) data capacity. Discs are thick, with a center hole. The size of the hole was chosen by Joop Sinjou and based on a Dutch 10-cent coin: a dubbeltje. Philips/Sony patented the physical dimensions. The official Philips history says the capacity was specified by Sony executive Norio Ohga to be able to contain the entirety of Beethoven's Ninth Symphony on one disc. This is a myth according to Kees Schouhamer Immink, Kees Immink, as the Eight-to-fourteen modulation, EFM code format had not yet been decided in December 1979, when the 120 mm size was adopted. The adoption of EFM in June 1980 allowed 30 percent more playing time that would have resulted in 97 minutes for 120 mm diameter or 74 minutes for a disc as small as . Instead, however, the information density was lowered by 30 percent to keep the playing time at 74 minutes. The 120 mm diameter has been adopted by subsequent formats, including Super Audio CD, DVD, HD DVD, and Blu-ray Disc. The diameter discs ("Mini CDs") can hold up to 24 minutes of music or 210 MiB.


Logical format


Audio CD

The logical format of an audio CD (officially Compact Disc Digital Audio or CD-DA) is described in a document produced in 1980 by the format's joint creators, Sony and Philips. The document is known colloquially as the ''Red Book'' Compact Disc Digital Audio, CD-DA after the color of its cover. The format is a two-channel 16-bit Pulse-code modulation, PCM encoding at a 44.1 kHz, 44.1 kHz sampling rate per channel. Four-channel Compact Disc Digital Audio, Four-channel sound was to be an allowable option within the ''Red Book'' format, but has never been implemented. Monaural audio has no existing standard on a ''Red Book'' CD; thus, the mono source material is usually presented as two identical channels in a standard ''Red Book'' stereo track (i.e., mono sound#Mirrored mono, mirrored mono); an MP3 CD, however, can have audio file formats with mono sound. CD-Text is an extension of the ''Red Book'' specification for an audio CD that allows for the storage of additional text information (e.g., album name, song name, artist) on a standards-compliant audio CD. The information is stored either in the Optical disc authoring, lead-in area of the CD, where there are roughly five kilobytes of space available, or in the Compact Disc subcode, subcode channels R to W on the disc, which can store about 31 megabytes. Compact Disc + Graphics is a special audio compact disc that contains graphics data in addition to the audio data on the disc. The disc can be played on a regular audio CD player, but when played on a special CD+G player, it can output a graphics signal (typically, the CD+G player is hooked up to a television set or a computer monitor); these graphics are almost exclusively used to display lyrics on a television set for karaoke performers to sing along with. The CD+G format takes advantage of the channels R through W. These six bits store the graphics information. CD + Extended Graphics (CD+EG, also known as CD+XG) is an improved variant of the #CD + Graphics, Compact Disc + Graphics (CD+G) format. Like CD+G, CD+EG uses basic CD-ROM features to display text and video information in addition to the music being played. This extra data is stored in Compact Disc subcode, subcode channels R-W. Very few, if any, CD+EG discs have been published.


Super Audio CD

Super Audio CD (SACD) is a high-resolution, read-only optical disc, optical audio storage, audio disc format that was designed to provide high fidelity, higher-fidelity digital audio reproduction than the ''Red Book''. Introduced in 1999, it was developed by Sony and Philips, the same companies that created the ''Red Book''. SACD was in a format war with DVD-Audio, but neither has replaced audio CDs. The SACD standard is referred to as the ''Scarlet Book'' standard. Titles in the SACD format can be issued as hybrid discs; these discs contain the SACD audio stream as well as a standard audio CD layer which is playable in standard CD players, thus making them backward compatible.


CD-MIDI

CD-Musical Instrument Digital Interface, MIDI is a format used to store music-performance data, which upon playback is performed by electronic instruments that synthesize the audio. Hence, unlike the original ''Red Book'' CD-DA, these recordings are not digitally sampled audio recordings. The CD-MIDI format is defined as an extension of the original ''Red Book''.


CD-ROM

For the first few years of its existence, the CD was a medium used purely for audio. However, in 1988, the ''Yellow Book''
CD-ROM A CD-ROM (, compact disc read-only memory) is a type of read-only memory consisting of a pre-pressed optical compact disc that contains data. Computers can read—but not write or erase—CD-ROMs. Some CDs, called enhanced CDs, hold both comput ...
standard was established by Sony and Philips, which defined a non-volatile optical data computer data storage medium using the same physical format as audio compact discs, readable by a computer with a CD-ROM drive.


Video CD

Video CD (VCD, View CD, and Compact Disc digital video) is a standard digital format for storing video media on a CD. VCDs are playable in dedicated VCD players, most modern DVD-Video players, personal computers, and some video game consoles. The VCD standard was created in 1993 by Sony, Philips, Panasonic, Matsushita, and JVC and is referred to as the ''White Book'' standard. Overall picture quality is intended to be comparable to VHS video. Poorly compressed VCD video can sometimes be of lower quality than VHS video, but VCD exhibits block artifacts rather than analog noise and does not deteriorate further with each use. 352×240 (or Source Input Format, SIF) resolution was chosen because it is half the vertical and half the horizontal resolution of the NTSC video. 352×288 is similarly one-quarter PAL/SECAM resolution. This approximates the (overall) resolution of an analog VHS tape, which, although it has double the number of (vertical) scan lines, has a much lower horizontal resolution.


Super Video CD

Super Video CD (Super Video Compact Disc or SVCD) is a format used for storing video media on standard compact discs. SVCD was intended as a successor to VCD and an alternative to DVD-Video and falls somewhere between both in terms of technical capability and picture quality. SVCD has two-thirds the display resolution, resolution of DVD, and over 2.7 times the resolution of VCD. One CD-R disc can hold up to 60 minutes of standard-quality SVCD-format video. While no specific limit on SVCD video length is mandated by the specification, one must lower the video bit rate, and therefore quality, to accommodate very long videos. It is usually difficult to fit much more than 100 minutes of video onto one SVCD without incurring a significant quality loss, and many hardware players are unable to play video with an instantaneous bit rate lower than 300 to 600 kilobits per second.


Photo CD

Photo CD is a system designed by Kodak for digitizing and storing photos on a CD. Launched in 1992, the discs were designed to hold nearly 100 high-quality images, scanned prints, and slides using special proprietary encoding. Photo CDs are defined in the ''Beige Book'' and conform to the CD-ROM XA and CD-i Bridge specifications as well. They are intended to play on CD-i players, Photo CD players, and any computer with suitable software (irrespective of operating system). The images can also be printed out on photographic paper with a special Kodak machine. This format is not to be confused with Kodak
Picture CD Picture CD is a product by Kodak, following on from the earlier Photo CD product. It holds photos from a single roll of color film, stored at 1024×1536 resolution using JPEG compression. The product is aimed at consumers. Software to view and pe ...
, which is a consumer product in CD-ROM format.


CD-i

The Philips ''Green Book (CD standard), Green Book'' specifies a standard for interactive multimedia compact discs designed for Philips CD-i, CD-i players (1993). CD-i discs can contain audio tracks that can be played on regular CD players, but CD-i discs are not compatible with most
CD-ROM A CD-ROM (, compact disc read-only memory) is a type of read-only memory consisting of a pre-pressed optical compact disc that contains data. Computers can read—but not write or erase—CD-ROMs. Some CDs, called enhanced CDs, hold both comput ...
drives and software. The CD-i Ready specification was later created to improve compatibility with audio CD players, and the CD-i Bridge specification was added to create CD-i compatible discs that can be accessed by regular CD-ROM drives.


CD-i Ready

Philips defined a format similar to CD-i called CD-i Ready, which puts CD-i software and data into the Pregap#Computer data in pregap, pregap of track 1. This format was supposed to be more compatible with older audio CD players.


Enhanced Music CD (CD+)

Enhanced Music CD, also known as CD Extra or CD Plus, is a format which combines CD-DA, audio tracks and CD-ROM, data tracks on the same disc by putting audio tracks in a first Session (CD), session and data in a second session. It was developed by Philips and Sony, and it is defined in the ''Blue Book (CD standard), Blue Book''.


VinylDisc

VinylDisc is the hybrid of a standard audio CD and the Gramophone record, vinyl record. The vinyl layer on the disc's label side can hold approximately three minutes of music.


Manufacture

In 1995, material costs were 30 cents for the jewel case and 10 to 15 cents for the CD. Wholesale cost of CDs was $0.75 to $1.15, while the typical retail price of a prerecorded music CD was $16.98. On average, the store received 35 percent of the retail price, the record company 27 percent, the artist 16 percent, the manufacturer 13 percent, and the distributor 9 percent. When 8-track tape, 8-track cartridges, compact cassettes, and CDs were introduced, each was marketed at a higher price than the format they succeeded, even though the cost to produce the media was reduced. This was done because the perceived value increased. This continued from phonograph records to CDs, but was broken when Apple Inc., Apple marketed MP3s for $0.99, and albums for $9.99. The incremental cost, though, to produce an MP3 is negligible.


Writable compact discs


Recordable CD

Recordable Compact Discs, CD-Rs, are injection-molded with a "blank" data spiral. A photosensitive dye is then applied, after which the discs are metalized and lacquer-coated. The write laser of the CD recorder changes the color of the dye to allow the read laser of a standard CD player to see the data, just as it would with a standard stamped disc. The resulting discs can be read by most CD-ROM drives and played in most audio CD players. CD-Rs follow the ''Orange Book'' standard. CD-R recordings are designed to be permanent. Over time, the dye's physical characteristics may change causing read errors and data loss until the reading device cannot recover with error correction methods. Errors can be predicted using Optical disc#Surface error scanning, surface error scanning. The design life is from 20 to 100 years, depending on the quality of the discs, the quality of the writing drive, and storage conditions. However, testing has demonstrated such degradation of some discs in as little as 18 months under normal storage conditions. This failure is known as disc rot, for which there are several, mostly environmental, reasons. The recordable audio CD is designed to be used in a consumer audio CD recorder. These consumer audio CD recorders use SCMS (Serial Copy Management System), an early form of digital rights management (DRM), to conform to the AHRA (Audio Home Recording Act). The Recordable Audio CD is typically somewhat more expensive than CD-R due to lower production volume and a 3 percent Audio Home Recording Act#AHRA royalties, AHRA royalty used to compensate the music industry for the making of a copy. High-capacity recordable CD is a higher-density recording format that can hold 20% more data than conventional discs. The higher capacity is incompatible with some recorders and recording software.


ReWritable CD

CD-RW is a re-recordable medium that uses a metallic alloy instead of a dye. The write laser, in this case, is used to heat and alter the properties (amorphous vs. crystalline) of the alloy, and hence change its reflectivity. A CD-RW does not have as great a difference in reflectivity as a pressed CD or a CD-R, and so many earlier CD audio players cannot read CD-RW discs, although most later CD audio players and stand-alone DVD players can. CD-RWs follow the ''Orange Book'' standard. The ReWritable Audio CD is designed to be used in a consumer audio CD recorder, which will not (without modification) accept standard CD-RW discs. These consumer audio CD recorders use the Serial Copy Management System (SCMS), an early form of digital rights management (DRM), to conform to the United States' Audio Home Recording Act (AHRA). The ReWritable Audio CD is typically somewhat more expensive than CD-R due to (a) lower volume and (b) a 3 percent Audio Home Recording Act#AHRA royalties, AHRA royalty used to compensate the music industry for the making of a copy.


Copy protection

The ''Red Book'' audio specification, except for a simple "anti-copy" statement in the subcode, does not include any copy protection mechanism. Known at least as early as 2001, attempts were made by record companies to market "copy-protected" non-standard compact discs, which cannot be Ripping, ripped, or copied, to hard drives or easily converted to other formats (like FLAC, MP3 or Vorbis). One major drawback to these copy-protected discs is that most will not play on either computer CD-ROM drives or some standalone CD players that use CD-ROM mechanisms. Philips has stated that such discs are not permitted to bear the trademarked ''Compact Disc Digital Audio'' logo because they violate the ''Red Book'' specifications. Numerous copy-protection systems have been countered by readily available, often free, software, or even by simply turning off automatic AutoPlay to prevent the running of the DRM executable program.


See also


References


Further reading

* Ecma International
''Standard ECMA-130: Data Interchange on Read-only 120 mm Optical Data Disks (CD-ROM)''
2nd edition (June 1996). * Pohlmann, Kenneth C. (1992)
''The Compact Disc Handbook''
Middleton, Wisconsin: A-R Editions. . * Peek, Hans et al. (2009
''Origins and Successors of the Compact Disc''
Springer Science+Business Media B.V. . * Peek, Hans B.
''The emergence of the compact disc''
IEEE Communications Magazine, Jan. 2010, pp. 10–17. * Heitaro Nakajima, Nakajima, Heitaro; Ogawa, Hiroshi (1992
Disc Technology''
Tokyo, Ohmsha Ltd. . * Barry, Robert (2020). ''Compact Disc (Object Lessons)''. New York: Bloomsbury. .


External links


Video
How Compact Discs are Manufactured
CD-Recordable FAQ
Exhaustive basics on CD-Recordable's



nbsp;– published by Philips in 2005
Patent History CD Disc
nbsp;– published by Philips in 2003
Sony History, Chapter 8, This is the replacement of Gramophone record ! (第8章 レコードに代わるものはこれだ)
nbsp;– Sony website in Japanese
Popularized History on Soundfountain

A Media History of the Compact Disc
(1-hour podcast interview) {{Authority control Compact disc, 120 mm discs Rotating disc computer storage media Audio storage Digital audio storage Video storage Consumer electronics Audiovisual introductions in 1982 Joint ventures Dutch inventions Japanese inventions Information technology in the Netherlands Science and technology in the Netherlands Science and technology in Japan Home video